\square

Question Paper Code : X67783

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Fourth Semester
Computer Science and Engineering
MA1252 - PROBABILITY AND QUEUEING THEORY
(Common to Information Technology)
(Regulations 2008)
Time : Three Hours
Maximum : 100 Marks

Statistical Tables may be permitted.
Answer ALL questions
PART - A
(10×2=20 Marks)

1. A random variable X takes the values $1,2,3,4$ such that $2 P(X=1)=3 P(X=2)=$ $P(X=3)=5 P(X=4)$. Find the probability distribution of X.
2. Write down the mean and variance of the Weibull distribution.
3. The joint probability mass function of a two dimensional random variable (X, Y) is given by $p(x, y)=k(2 x+3 y) ; x=0,1,2 ; y=1,2,3$. Find the value of k.
4. What do you mean by correlation between two random variables ?
5. If $\mathrm{N}(\mathrm{t})$ is the Poisson process, then what can you say about the time we will wait for the first event to occur? And the time we will wait for the $\mathrm{n}^{\text {th }}$ event to occur?
6. Is Poisson process stationery ? Justify.
7. Define Markovian Queueing Models.
8. Suppose that customers arrive at a Poisson rate of one per every 12 minutes and that the service time is exponential at a rate of one service per 8 minutes.
9. State Pollaczek-Khinchine formula.
10. Define closed network of a queuing system.
11. a) i) If a random variable X has a cumulative distribution function
$F(x)=\left\{\begin{array}{ll}0, & \text { for } x \leq 0 \\ c\left(1-e^{x}\right) & \text { for } x>0\end{array}\right.$, find the probability density function, the
value of c and $\mathrm{P}(1<\mathrm{x}<2)$.
ii) Find the moment generating function and $r^{\text {th }}$ moment for the distribution whose probability density function is $f(x)=e^{-x}, 0 \leq x \leq \infty$. Also find the first three moments about mean.
(OR)
b) i) It is known that the probability of an item produced by a certain machine will be defective is 0.05 . If the produced items are sent to the market in packets of 20 , find the number of packets containing at least, exactly and at most 2 defective items in a consignment of 1000 packets.
ii) State and prove memory less property of exponential distribution. Using this property, solve the following problem :

The length of the shower on a tropical Island during rainy season has an exponential distribution with parameter 2 , time being measured in minutes. If a shower has already lasted for 2 minutes, what is the probability that it will last for at least one more minute?
12. a) The joint probability density function of a two-dimensional random variable (X, Y) is given by $f(x, y)=x y^{2}+\frac{x^{2}}{8} ; 0 \leq x \leq 2 ; 0 \leq y \leq 1$. Compute $\mathrm{P}(\mathrm{X}>1), \mathrm{P}\left(\mathrm{Y}<\frac{1}{2}\right), \mathrm{P}\left(\mathrm{X}>1 / \mathrm{Y}<\frac{1}{2}\right), \mathrm{P}\left(\mathrm{Y}<\frac{1}{2} / \mathrm{X}>1\right) ; \mathrm{P}(\mathrm{X}<\mathrm{Y})$ and $\mathrm{P}(\mathrm{X}+\mathrm{Y} \leq 1)$.
(OR)
b) Obtain the equations of the regression lines from the following data. Hence find the coefficient of correlation between X and Y . Also estimate the value of Y when $X=38$ and X when $Y=18$.

$\mathbf{X}:$	22	26	29	30	31	31	34	35
$\mathbf{Y}:$	20	20	21	29	27	24	27	31

13. a) i) Prove that the process $\{\mathrm{X}(\mathrm{t})\}$ whose probability distribution given by

$$
\mathrm{P}[\mathrm{X}(\mathrm{t})=\mathrm{n}]=\left\{\begin{array}{cl}
\frac{(\mathrm{at})^{\mathrm{n}-1}}{(1+\mathrm{at})^{\mathrm{n+1}}}, & \mathrm{n}=1,2,3, \ldots \tag{8}\\
\frac{\mathrm{at}}{1+\mathrm{at}}, & \mathrm{n}=0
\end{array}\right. \text { is not stationary. }
$$

ii) The TPM of a Markov chain $\left\{\mathrm{X}_{\mathrm{n}}\right\}, \mathrm{n}=1,2,3, \ldots$ having three states 1,2 and 3 is $P=\left[\begin{array}{lll}0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3\end{array}\right]$ and the initial distribution is $\left.P^{(0)}=\{0.7,0.2,0.1\}\right\}$

1) $\mathrm{P}\left[\mathrm{X}_{2}=3\right]$
2) $\mathrm{P}\left[\mathrm{X}_{3}=2, \mathrm{X}_{2}=3, \mathrm{X}_{1}=3, \mathrm{X}_{0}=2\right]$.
(OR)
b) i) A salesman territory consists of three cities A, B and C. He never sells in the same city on successive days. If he sells in city A , then the next day he sells in city B. However if he sells in either B or C the next day he is twice as likely as to sell in city A as in the other city. In the long run how often does he sell in each the cities?
ii) Suppose that customers arrive at a bank according to a Poisson process with mean rate of 3 per minute. Find the probability that during a time interval of two minutes.
3) Exactly 4 customers arrive
4) More than 4 customers arrive
5) Less than 4 customers arrive.
14. a) Obtain the steady state probabilities of birth-death process. Also draw the transition graph.
(OR)
b) At a port there are 6 unloading berths and 4 unloading crews. When all the berths are full, arriving ships are diverted to an overflow facility 20 kms down the river. Tankers arrive according to Poisson process with a mean of 1 every 2 hrs . It takes for an unloading crew, on the average, 10 hrs to unload a tanker, the unloading time following an exponential distribution. Find
i) how many tankers are at the port on the average ?
ii) how long does a tanker spend at the port on the average ?
iii) what is the average arrival rate at the overflow facility ?
15. a) Automatic car wash facility operates with only one bay. Cars arrive according to a Poisson process at the rate of 4 cars per hour and may wait in the facility's parking lot if the bay is busy. The service time for all cars is constant and equal to 10 minutes. Determine $\mathrm{L}_{\mathrm{s}}, \mathrm{L}_{\mathrm{q}}, \mathrm{W}_{\mathrm{s}}$ and W_{q}.
(OR)
b) Consider a system of two servers where customers from outside the system arrive at sever 1 at a Poisson rate 4 and at server 2 at a Poisson rate 5. The service rates for server 1 and 2 are 8 and 10 respectively. A customer upon completion of service at server 1 is likely to go to server 2 or leave the system; whereas a departure from server 2 will go 25 percent of the time to server 1 and will depart the system otherwise. Determine the limiting probabilities, L_{s} and W_{s}.
